

300 Watts

- High power density 4 x 2"
- 180W Convection / 300W Fan cooled / 360W peak for 5 sec
- Latest medical approval IEC/ EN/ ANSI/AMMI ES 60601-1
- PG, Ctrl, 5V / 1A SB, Class I and II versions
- 10% Voltage adjust
- EN55032 Level B conducted & radiated

The MAF300 series of chassis mount AC-DC PSUs provide 180W convection, 300W fan cooled with a peak load of 360W from a market leading 4" x 2" package. The range is approved for use in Medical applications, available in 12-53V output models. The units are available in many variants; Featured I/O version, class I & II, conduction cooling, enclosed or DIN rail with/without fan speed control. They are fully featured with 10% voltage output adjust and a full suite of protections

Dimonoiono:

Open: 4 x 2.09 x 1.32" (101.6 x 53 x 33.6mm)

Baseplate: 4.6 x 2.44 x 1.56" (116.8 x 62 x 39.7mm)

Covered: 4.6 x 2.44 x 2.32" (116.8 x 62 x 59mm)

DIN: 4.6 x 2.44 x 2.66" (116.8 x 62 x 66.7mm)

Models & Ratings

INSTALLATION ADVICE PG 8

Model Number ⁽¹⁾	Output Power	Power Output Output Current		Ripple &	Efficiency	Capacitive		
	21CFM	Voltage	Convection	21 CFM fan	5 sec Peak ⁽²⁾	Noise ⁽³⁾		load
MAF300US12 A- MF3	300W	12V	15A	25A	30A	120mVp-p	91%	20000uF
MAF300US15 A -MF3	300W	15V	12A	20A	24A	150mVp-p	92%	12000uF
MAF300US18 A -MF3	300W	18V	10A	16.66A	20A	180mVp-p	93%	9000uF
MAF300US24A-MF3	300W	24V	7.5A	12.5A	15A	240mVp-p	93%	2400uF
MAF300US28 A- MF3	300W	28V	6.42A	10.71A	12.85A	280mVp-p	93%	2000uF
MAF300US36 A- MF3	300W	36V	5A	8.33A	10A	360mVp-p	93%	1000uF
MAF300US48 A -MF3	300W	48V	3.75A	6.25A	7.5A	480mVp-p	93%	650uF
MAF300US53 A -MF3	300W	53V	3.4A	5.67A	6.79A	530mVp-p	93%	470uF

Notes

- 1. For class II product change A above for B. For example MAF300US12B-M. For baseplate, enclosed or DIN rail type add U2, E1 or D1 respectively after M. Fan options: F1/F2 fixed or variable fan speed for E1/D1 versions and F3/F4 for fixed or variable fan output for E1 or open frame versions. For cost down version without I/O feature add N to the end. For example MAF300US12A-ME1F2N for 12V output, enclosed, variable fan with no I/O option.
- 2. Peak max duration is 5 sec, 20% duty with average below 50%
- 3. Noise is measured with 20MHZ bandwidth and 1uF/100V 1206 X7R MLCC cap.
- 4. All specifications are at full load 230VAC 25°C unless otherwise stated.

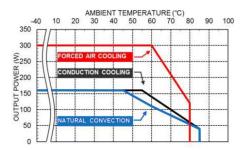
Key specifications

Parameter	Minimum	Typical	Maximum	Units	Notes & Conditions	
AC Input range	85		264	VAC	See page 3 for derating curve. 120-370V DC	
Operating temperature	-40		80/85	°C	See page 3 for derating curve	
Efficiency	91		93	%	See models and ratings table above	
Dimensions	Open: 4 x 2.09 x 1.32" (101.6 x 53 x 33.6mm) Baseplate: 4.6 x 2.44 x 1.56" (116.8 x 62 x 39.7mm) Covered: 4.6 x 2.44 x 2.32" (116.8 x 62 x 59mm) DIN: 4.6 x 2.44 x 2.66" (116.8 x 62 x 66.7mm)					
EMC	EN 55032 Level B conducted and level A radiated. EN61000-3 and EN61000-4, harmonics, flicker, Surge, EFT, ESD, conducted and radiated. EN60601-1-1 4th edition immunity.					
Safety	IEC/ EN/ ANSI/AMMI ES 60601-1, IEC /EN /UL 62368-1					

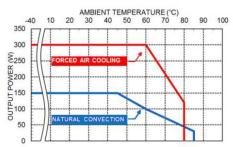
	ut

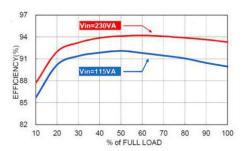
Parameter	Minimum	Typical	Maximum	Units	Notes & Conditions
AC Input voltage	85		264	VAC	2x Internal fuse T5A/250VAC
DC Input voltage	120		370	VDC	
Input frequency	47		63	Hz	
Power factor	0.9				EN61000-3-2 class A
Input current			1.6/3.9	Α	1.6A at 240VAC, 3.9A at 100VAC
Inrush current			70	Α	230VAC cold start at 25°C
Leakage current			100	uA	At 264VAC full load
Start up time			2	S	
Rise time		30		mS	
No load input power	0.3		3	W	230VAC 3W with fan 0.3W without

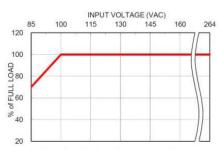
Output

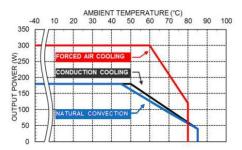

o aispair						
Parameter	Minimum	Typical	Maximum	Units	Notes & Conditions	
Output voltage	12		53	VDC	See Model & Ratings table	
Set point accuracy			±1	%		
Line regulation			±0.2	%	High line to low line full load	
Load regulation			±0.4	%	10% to 90% load change	
Voltage adjust			±10	%		
Minimum load	0			%		
Transient response			3	%	Recovery within 1% within 600 µs for 50-75% step at 2.5A/us	
Hold up time		10		mS	At 225W load and 115VAC	
Overload protection		150			Trip & restart. Automatic recovery	
Overvoltage protection	115		135		Latch off. AC reset required,	
Short circuit protection					Automatic recovery, for high current latch off	
Over temperature protection		125		°C		
Standby power			1000	mA	5V (total standby and fan power 8W)	
Fan Power		500 mA 12V (total standby and fan power 8W)				
Remote on off	ON Open or 3-12V	OFF Short or 0-1.	2V referenced to "-	Control" -0.5 to 1	mA current draw.	
Power good signal	Power good : low,	Power off : Open co	ollector referenced to	o GND		

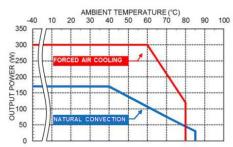
Environmental


Parameter	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating temperature	-40		80/85	°C	See derating curve page 3. 80°C with fan
Storage temperature	-40		80/85	°C	80°C with fan
Cooling					Fan cooled (requires 21CFM), conduction or convection cooled
Temperature coefficient			±0.02	%/°C	
Humidity	5		95	%RH	Non-condensing
Operating altitude			5000	М	
Thermal Shock					MIL-STD-810F
Vibration					IEC60068-2-6
Shock					IEC60068-2-27


Derating Curves


Derating Curve vs. Ambient Temperature Vin=115VAC Open type


Derating Curve vs. Ambient Temperature Vin=115VAC Enclosed type / Din rail type


Efficiency vs. Output Load MAF300US24 with Forced air cooling

Derating Curve vs. Input Voltage MAF300

Derating Curve vs. Ambient Temperature Vin=230VAC Open type

Derating Curve vs. Ambient Temperature Vin=230VAC Enclosed type / Din rail type

Efficiency vs. Input Voltage MAF300US24 with Forced air cooling

C		

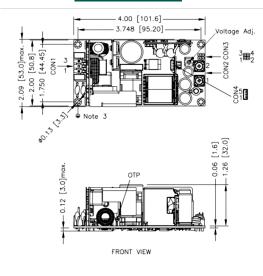
Parameter	Minimum	Typical	Maximum	Units	Notes & Conditions	
Efficiency	91		93	%	See models & Ratings table	
Isolation: Input to output	4000			VAC	2x MOPP	
Input/output to ground	2500			VAC		
Isolation resistance	100			ΜΩ	At 500VDC	
Power density			28.4	W/In ³		
Switching frequency		140		KHz	Full load 230VAC	
MTBF		1056		Khrs	MIL-HDBK-217F 25°C	
Weight	Open frame 210g,	Open frame 210g, base plate 260g, enclosed 318g and DIN 340g				

EMC: Emissions

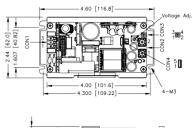
	Standard	Test level	Criteria	Notes & Conditions
Conducted	EN55011/32	В		
Radiated	EN55011/32	А		
Harmonic current	EN61000-3-2	Class A		
Voltage flicker	EN61000-3-3			

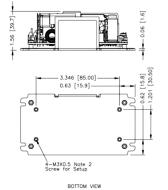
EMC: Immunity

	Standard	Test level	Criteria	Notes & Conditions
ESD	EN61000-4-2	4	А	±8kV contact, ±15kV air
Radiated	EN61000-4-3	3+	А	20V/m
EFT	EN61000-4-4	3	А	±2KV
Surges	EN61000-4-5	Installation Class 3	А	±2KV line—neutral, ±1KV line/neutral—earth
Conducted	EN61000-4-6	3+	А	20Vrms
PFMF	EN61000-4-8	4	А	30A/rm
Dips and interruptions	EN61000-4-11			Compliant


Safety Approvals

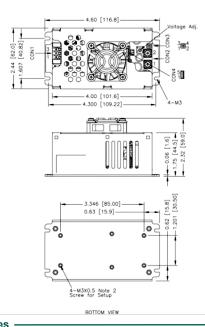
	Safety standard	Notes & Conditions
UL	ES 60601-1, UL 62368-1	E360199
СВ	IEC 60601-1, IEC 62368-1	E193009
TUV	EN60601-1, EN 62368-1	
CE /UKCA		2014/35/EU Low voltage directive
Equipment protection class		Class I or II (specify when ordering, see models table)



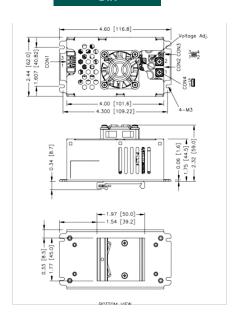

Mechanical Details

Open Frame

Base plate


CON1: Pin Connections Input ⁽⁵⁾			
Pin	Function		
1	Neutral (-DC)		
2	N/C		
3	Line (+DC)		

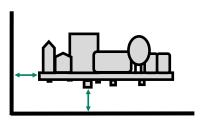
CON2: Pin Connections Output ⁽⁶⁾	
Pin	Function
1	+Vout
2	-Vout


CON3: Pin Connections fan / aux power (7) Pin Function	
1	+Fan
2	-Fan
3	+V Sense
4	-V Sense

CON4: Pin Connections I/O control (8)	
Pin	Function
1	+Standby
2	-Standby
3	+PG
4	-Control
5	+Control

Enclosed

DIN

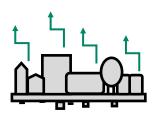

Notes -

- 1. All dimensions in inches [mm]. Tolerance 2DP" ±0.02" [1DPmm ±0.5mm] , 3DP" ±0.01" [2DPmm ±0.25mm]
- 2. Mounting screws not to exceed 5Kgf-cm / 0.49Nm on framed units
- 3. Mounting hole used for PE connection
- 4. Screw terminal torque 16.8kgf.cm / 1.65Nm
- 5. CON1 mates with Molex 09-50-8031
- 6. CON2 mates with KST ring terminal RVS2-3.7
- 7. CON3 mates with Molex 90143-0004
- 8. CON4 mates with Molex 51021-0500

Installation Advice

Safety

On installation customers must consider the required creepage and clearance distances between the PSU and the end-equipment enclosure. These distances vary depending on the installation class and safety standard requirements.


For **Class I** installations there should be 3-4mm between any part of the PSU and any earthed metal part of the enclosure. 3mm is acceptable for IT applications, 4mm required for medical applications. In Class I installations the PSU earth point must be connected to system safety ground.

For Class II installations distances may need to be increased if being installed into a surrounding metal enclosure

Ensure consideration of components on the underside of the PCB or low lying spills when measuring clearance distances between the PSU and the end-equipment. Also top surface especially in tight enclosures such as 1U boxes. An insulation material can be used between PSU and metal if smaller gap required.

FiDUS recommends installing the PSU on 6mm stand offs typically, but check the distances.

EMC

Conducted and radiated emissions compliance is a common application consideration. It is important to remember that even when using a properly filtered PSU, an application may still not achieve compliance if it is not designed to minimise emissions. That being said, there are a number of things that can be done to optimise EMC performance either as best practice, or if you are struggling for compliance:

- 1) Connect all marked EMI ground points to earth. Often these are combined with the safety earth point (in class I installations), but on some power supplies there may be additional earth tags or mounting points.
- 2) Minimise the length of input/output wiring where possible and try to maintain max distance of the conductors from the PSU, to prevent noise pick up. Avoid bundling input and output cables together. A common component to avoid placing wiring near is the PFC inductor in power factor corrected power supplies.
- 3) Apply additional filtering before the PSU input (ensure consideration of which frequencies there are issues with before selecting a filter).
- 4) When using an open frame PSU, mount the supply on a metal plate and connect EMI mounting points.
- 5) In multi circuit systems, decouple the circuits locally.
- **6)** Ferrites added between the PSU and system input connector and/or the DC output cables can help in reducing radiated noise issues in systems. If seen, issues are commonly in the 30-150MHz area.

For more detailed assistance, if you still have any concerns with compliance, please get in contact with our Engineering department who are on hand to assist with any queries.

Thermal

Thermal management is an important consideration when thinking about equipment service life. Electrolytic capacitors within the PSU wear with time and are typically the first end-of-life failure. Keeping the operation temperature of key components within the PSU, such as the electrolytic capacitors, as low as possible is paramount. As a general rule, for every 10°C drop in the operating temperature of the electrolytic capacitators you double their lifetime, and thus the lifetime of the power supply. When looking at thermal performance it is helpful to test under a worst-case set of conditions, to ensure component temperatures are in an acceptable range for the required service life. Then consider the impact of operational time, load and temperature profile to estimate a more realistic lifetime for your PSU.

Also, many FiDUS power supplies offer a *Peak Power* rating to provide for customers with pulsing loads. When using a peak power capability customers must consider:

- 1) Peak duration rating: the maximum length of time the peak can be drawn for
- 2) Duty cycle: the frequency with which the peak can be drawn. (e.g. 10% duty cycle, 1 second on:9 seconds off)
- 3) Average power value: datasheets will state the maximum average power acceptable with peak power PSUs. If any of these elements are exceeded the supply may overheat, with performance and lifetime suffering as a result.