TLB6-A1PC

(((•))) Residual Current Transducer

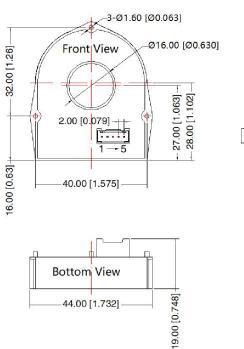
DIMENSIONS:

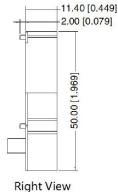
IEC 62752 (IC-CPD)

IEC 62955 (RDC-PD)

3000A SURGE

General specifications


Part number	Input voltage	DC residual current	AC residual current	Rated current	Static power dissipation
TLB6-A1PC	5VDC	6mA	30mA	80A/ 40A (1ph/3ph)	0.25W


Electrical specifications

Parameter	Symbol	Min	Typical	Мах	Unit
Rated residual DC operating current			6		mA
Rated residual AC operating current			30		mA
Range of remaining DC operating current		3	4.5	6	mA
Range of remaining AC operating current		15	24	30	mA
Input voltage	V _{cc}	4.85	5	5.15	V
Operating current			30		mA

TLB6-A1PC

Mechanical

Notes

1. All dimensions shown in mm [Inch]

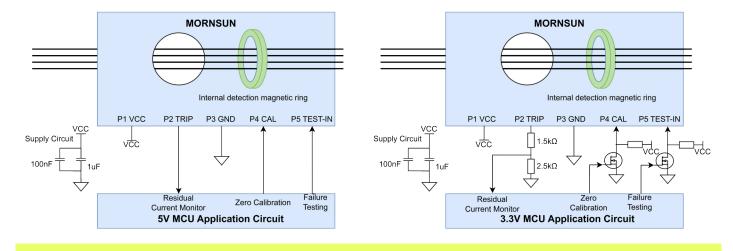
2. Pin tolerance: ±0.10[±0.004]

3. General tolerance $\pm 0.50[\pm 0.020]$

4. Housing Yeonho SMH200-5H/ CJT

A2008HB-5P

Pin-Out					
1	Vcc				
2	Trip				
3	GND				
4	Calibrate				
5	Test-input				


Pin out description

PIN	ID	Description
1	Vcc	100nF and 1uF capacitors are required in parallel on input
2	Trip	Trip output pin, when detected > 6mA DC residual current or > 30mA AC residual current, the pin is set high
3	GND	Ground
4	Calibrate	Zero calibration pin, when the pin inputs a duration >50ms and <100ms low voltage, the calibration function is enabled and the residual current detected at that moment is used as the zero current point. This residual current com- pensation value is stored in non volitile memory.
5	Test input	Test pin, when high there will be a built-in residual current generated, making the trip active to self-test system.

TLB6-A1PC

3

Application notes

NOTES

1. Two capacitors 1uF/16V and 100nF/16V need to be provided at VCC and GND for energy storage and decoupling.

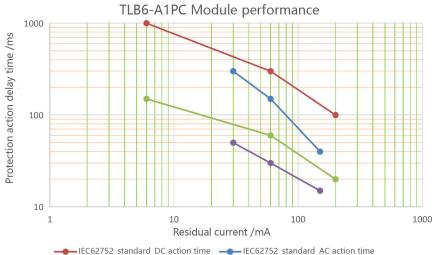
2. Residual current protection monitoring pin TRIP, zero calibration pin CAL, and TEST-IN pin are generally controlled by a microcontroller.

3. The residual current protection detection pin will output high level when the current value flowing through the internal detection magnetic ring exceeds the specification value.

4. When the module is started, the zero calibration pin should be kept at a low level for a period of time and then placed at a high level. See the timing sequence characteristic description

5. TEST-IN is used to test the performance of residual current transducer when self-test is required, and the test signal needs to meet the timing characteristics.

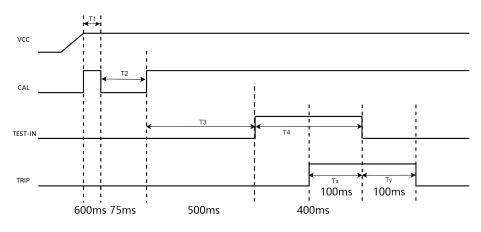
6. Hot plug is unavailable.


7. The product is connected to 5V MCU for use, and it is necessary to pay attention to level matching. If a 3.3V MCU is connected, a level conversion circuit is required for voltage conversion (as shown in the figure above). The 5V voltage is converted to 3.3V by two resistors, and the ratio of the two resistors is generally selected to be close to 3:5. At the same time, the input impedance of the MCU should be considered, and the resistance value of the two voltages should not be greater than one-tenth of the input impedance of the MCU. For example, the values of the two resistors are $1.5k\Omega$ and $2.5k\Omega$ or $10k\Omega$ and $15k\Omega$. In addition, the zero calibration function and failure testing function need to adjust the timing. For example, the zero calibration function of the product is effective at a low level. After connecting the MOS for level conversion, the 3.3V MCU should output a high level to make the calibration function effective, and the 3.3V MCU should output a low level when the product is not calibrated. Similarly, the 3.3V MCU output low level makes the failure testing function effective; When failure testing is not in use, the 3.3V MCU should output a high level.

TLB6-A1PC

Performance characteristic Typical Parameter Symbol Min Max Unit **Residual current waveform** 22.5 Frequency 50Hz AC 15 30 mA RMS ANDC50 0 Angle pulsating DC 11 15 30 mA RMS 15 mA RMS 90 Angle pulsating DC 10 30 Residual 135 Angle pulsating DC 10 15 35 mA RMS ΔNA135 operating 3 6 mA RMS Smooth DC 4.5 current LANS-DC 5 7 mA RMS Two phase rectification DC 3.5 AN2-PDC mA RMS Three phase rectification DC 3.1 45 AN3-PDC 6.2 Composite current 18 28 38 mA RMS 15 40 RMS 30mA Frequency 50Hz AC mS T ANAC50@30mA RMS 60mA Frequency 50Hz AC 15 40 mS TANAC50@60mA 15 RMS 150mA Frequency 50Hz AC 25 TANAC50@150mA mS RMS 42mA 0 Angle pulsating DC 15 40 mS T_{ANA0@42mA} RMS 84mA 0 Angle pulsating DC 15 40 mS TANA0@84mA RMS 210mA 0 Angle pulsating DC 15 25 mS TANA0@210mA RMS 42mA 0 Angle pulsating DC + 6mA smooth DC 15 40 mS T ANA0@42mA+S-DC@6mA RMS 84mA 0 Angle pulsating DC + 6mA smooth DC TANA0@84mA+S-DC@6mA 15 40 mS RMS 210mA 0 Angle pulsating DC + 6mA smooth DC 15 TANA0@210mA+S-DC@6mA 25 mS Response 6mA smooth DC 120 180 mS TANS-DC@6mA time 60mA smooth DC 15 40 TANS-DC@60mA mS 300mA smooth DC 15 2 mS TANS-DC@300mA RMS 6mA two phase rectification DC 120 180 mS TAN2PDC@6mA RMS 60mA two phase rectification DC 15 40 mS T AN2PDC@60mA 15 RMS 300mA two phase rectification DC 25 mS TAN2PDC@300mA RMS 6mA three phase rectification DC 120 180 mS T AN3PDC@6mA RMS 60mA three phase rectification DC 15 40 mS TAN3PDC@60mA RMS 300mA three phase rectification DC 15 25 mS TAN3PDC@300mA 15 RMS 210mA composite current 25 mS T

TLB6-A1PC


(5)

Timing characteristic

Parameter	Symbol	Min	Typical	Мах	Unit
Start To Calibration Interval	T1	600			mS
Calibrate Signal Maintenance Time	T2	50		100	mS
Calibration Signal Completion Wait Time	Т3		500		mS
Test Signal Duration	Τ4	400			mS

Timing application design essentials:

1. The startup speed of the VCC power supply should not be too slow, and it is recommended that the speed is greater than 10V/ms. 2. After the power supply is fully started, the startup and stabilization time of the module is about 200-300ms. The zero calibration delay time T1 should be greater than 100ms.

3. The zero calibration signal duration T2 should be greater than 50ms and less than 100ms; When the CAL low time is greater than 50ms, TLB6-A1PCE starts to zero calibration.

4. The waiting time T3 for calibration completion should be greater than 500ms.

5. TEST-IN self-test signal can only be enabled after T3 is completed, and the signal duration of single round self-test is required to be T4 >400ms.

6. After delaying the delay time of the protection action, the TRIP pin outputs high level. Generally speaking, Tx = 100ms after detecting the TRIP signal, the TEST-IN can be set to low level and the self-test signal can be closed. Then the high level of the TRIP pin returns to low level after Ty=100ms.

7. It is recommended to use the calibration function at Ta=25°C.

TLB6-A1PC

Protection and detection specifications

Parameter	Symbol	Min	Typical	Мах	Unit
Self Check Input Low Level Voltage	V _{TEST-IN IL}	0		1	V
Self Check Input High Level Voltage		4		5.1	V
Calibration Input Low Voltage		0		1	V
Calibration Input High Voltage		4		5.1	V
Operating Output Low Level Voltage	V _{TRIP-OL}	0		0.6	V
Operating Output High Level Voltage		4.5		Vcc	V

General specifications

Parameter	Symbol	Min	Typical	Мах	Unit
Operating temperature	T _A	-40		85	• C
Storage temperature	T _s	-50		125	° C
Weight	m	32	38	44	g
Vibration	20-150Hz, 2g (GB2423.10, IEC60068-2-6)				
Over voltage category	OVC III (IEC61010)				

Isolation specifications

Parameter	Operating conditions	Min	Typical	Мах	Unit
Isolation voltage	Primary to secondary 50hz 1min. Leakage current <1mA			5	kVAC
Insulation resistance	500VDC	1			GΩ

EMC specifications

Parameter	Operating conditions	Specificaitons	Performance
EMI	Conducted and Radiated CISPR32/EN55032		Level B
	ESD EN61000-4-2	Contact ±6kV, Air ±8KV	А
EMS	RS EN61000-4-3	30V/m	А
EIVIS	EFT EN61000-4-4	±4kV	А
	Surge current	3000A, 8/20us	В